Abstract

Accurate trajectory prediction for climbing aircraft is hampered by the presence of epistemic uncertainties concerning aircraft operation, which can lead to significant misspecification between predicted and observed trajectories. This paper proposes a generative model for climbing aircraft in which the standard Base of Aircraft Data (BADA) model is enriched by a functional correction to the thrust that is learned from the data. The method offers three features: predictions of the arrival time with 66.3% less error when compared to BADA; generated trajectories that are realistic when compared to test data; and a means of computing confidence bounds for minimal computational cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call