Abstract

Trees were on Earth 394 million years ago (394 Ma) as spore-producing Archaeopteris progymnosperms having largediameter trunks of secondary xylem (morphotype Callixyon) produced by vascular cambium. Plants of smaller stature with primary xylem cores were present in Late Silurian (416 Ma), but they lacked cambium and it remains unclear how and when the first trees evolved. Progymnosperms faded and gymnosperms arose during Middle Carboniferous, and conifers, ginkgos, cycads, tree ferns and cordaites were well established by the Carboniferous–Permian transition (299 Ma). Woods of the earliest conifers were different from those of today, and not until Late Triassic (220 Ma) did any begin producing secondary xylem similar to modern woods, the xylem phenotypes of Cupressaceae and Araucariaceae emerging much earlier than those of Pinaceae and flowering plants. Conifers have persisted and done relatively well despite major extinction events, severe climate change, insectivory, herbivory and microbial activity, all of which were in effect before as well as during the appearance of trees on Earth. Approximately 600 conifer species continue to exist, and the survivors presumably possess the physiological fitness needed to adapt to an ever-changing biosphere. However, this is speculative because their physiology remains less than well understood. Forestry interventions such as planting one species to the exclusion of others have the potential to exacerbate as well as sustain the ongoing existence of our remaining conifers. Key words: bordered pit, cambium, cell biology, cellulose, evolution, lignin, paleobotany, protoplasmic autolysis, secondary growth, wood formation, xylogenesis

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call