Abstract
The tight regulation of local auxin homeostasis and signalling maxima in xylem precursor cells specifies the organising activity of the vascular cambium and consequently promotes xylem differentiation and wood formation. However, the molecular mechanisms underlying the local auxin signalling maxima in the vascular cambium are largely unknown. Here, we reveal that brassinosteroid (BR)-activated WALLS ARE THIN1 (WAT1) facilitates wood formation by enhancing local auxin signalling in the vascular cambium in Solanum lycopersicum. Growth defects and low auxin signalling readouts in the BR-deficient tomato cultivar, Micro-Tom, were associated with a novel recessive allele, Slwat1-copi, created by the insertion of a retrotransposon in the last exon of the SlWAT1 locus. Molecular and genetic studies by generating the gain-of-function and loss-of-function tomato mutants revealed that SlWAT1 is a critical regulator for fine tuning local auxin homeostasis and signalling outputs in vascular cambium to facilitate secondary growth. Finally, we discovered that BR-regulated SlBZR1/2 directly activated downstream auxin responses by SlWAT1 upregulation in xylem precursor cells to facilitate xylem differentiation and subsequent wood formation. Our data suggest that the BR-SlBZR1/2-WAT1 signalling network contributes to the high level of auxin signalling in the vascular cambium for secondary growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.