Abstract

Electrocardiogram (EKG/ECG) is a key diagnostic tool to assess patient's cardiac condition and is widely used in clinical applications such as patient monitoring, surgery support, and heart medicine research. With recent advances in machine learning (ML) technology there has been a growing interest in the development of models supporting automatic EKG interpretation and diagnosis based on past EKG data. The problem can be modeled as multi-label classification (MLC), where the objective is to learn a function that maps each EKG reading to a vector of diagnostic class labels reflecting the underlying patient condition at different levels of abstraction. In this paper, we propose and investigate an ML model that considers class-label dependency embedded in the hierarchical organization of EKG diagnoses to improve the EKG classification performance. Our model first transforms the EKG signals into a low-dimensional vector, and after that uses the vector to predict different class labels with the help of the conditional tree structured Bayesian network (CTBN) that is able to capture hierarchical dependencies among class variables. We evaluate our model on the publicly available PTB-XL dataset. Our experiments demonstrate that modeling of hierarchical dependencies among class variables improves the diagnostic model performance under multiple classification performance metrics as compared to classification models that predict each class label independently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.