Abstract

When machine learning programs from data, we ideally want to learn efficient rather than inefficient programs. However, existing inductive logic programming (ILP) techniques cannot distinguish between the efficiencies of programs, such as permutation sort (n!) and merge sort O(n;log;n). To address this limitation, we introduce Metaopt, an ILP system which iteratively learns lower cost logic programs, each time further restricting the hypothesis space. We prove that given sufficiently large numbers of examples, Metaopt converges on minimal cost programs, and our experiments show that in practice only small numbers of examples are needed. To learn minimal time-complexity programs, including non-deterministic programs, we introduce a cost function called tree cost which measures the size of the SLD-tree searched when a program is given a goal. Our experiments on programming puzzles, robot strategies, and real-world string transformation problems show that Metaopt learns minimal cost programs. To our knowledge, Metaopt is the first machine learning approach that, given sufficient numbers of training examples, is guaranteed to learn minimal cost logic programs, including minimal time-complexity programs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.