Abstract

Dynamic multimodal networks are networks with node attributes from different modalities where the attributes and network relationships evolve across time, i.e., both networks and multimodal attributes are dynamic; for example, dynamic relationship networks between companies that evolve across time due to changes in business strategies and alliances, which are associated with dynamic company attributes from multiple modalities such as textual online news, categorical events, and numerical financial-related data. Such information can be useful in predictive tasks involving companies. Environmental, social, and governance (ESG) ratings of companies are important for assessing the sustainability risks of companies. The process of generating ESG ratings by expert analysts is, however, laborious and time-intensive. We thus explore the use of dynamic multimodal networks extracted from the web for forecasting ESG ratings. Learning such dynamic multimodal networks from the web for forecasting ESG ratings is, however, challenging due to its heterogeneity and the low signal-to-noise ratios and non-stationary distributions of web information. Human analysts cope with such issues by learning concepts from past experience through relational thinking and scanning for such concepts when analyzing new information about a company. In this article, we propose the Dynamic Multimodal Slot Concept Attention-based Network (DynScan) model. DynScan utilizes slot attention mechanisms together with slot concept alignment and disentanglement loss functions to learn latent slot concepts from dynamic multimodal networks to improve performance on ESG rating forecasting tasks. DynScan is evaluated on forecasting tasks on six datasets, comprising three ESG ratings across two sets of companies. Our experiments show that DynScan outperforms other state-of-the-art models on these forecasting tasks. We also visualize the slot concepts learned by DynScan on five synthetic datasets and three real-world datasets and observe distinct and meaningful slot concepts being learned by DynScan across both synthetic and real-world datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.