Abstract
Common Structural Health Monitoring systems are used to detect past damages occurred in structures with sensor networks and external sensor data processing. The time of the damage creation event is commonly unknown. Numerical methods and Machine Learning are used to extract relevant damage information from sensor signals that is characterised by a high data volume and dimension. In this work, distributed multi-instance learning applied to raw time-series of sensor data is deployed to predict the event of the occurrence of a hidden damage in a mechanical structure using typical vibrations of the structure. The sensor processing and learning is performed locally on sensor node level with a global fusion of prediction results to estimate the damage location and the time of the damage creation. Recurrent neural networks with a long-short-term memory architecture are considered implementing a damage discriminator function. The sensor data required for the evaluation of the proposed approach is generated by a multi-body physics simulation approximating material properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have