7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1515/iss-2024-0007
Copy DOIJournal: Innovative surgical sciences | Publication Date: Jul 3, 2024 |
License type: CC BY 4.0 |
Three-dimensional (3D) planning and Patient Specific Instrumentation (PSI) can help the surgeon to obtain more predictable results in Medial Opening Wedge High Tibial Osteotomy (mOW-HTO) than the conventional techniques. We compared the accuracy of the PSI and standard techniques and measured the learning curve for surgery time and number of fluoroscopic shots. We included the first 12 consecutive cases of mOW-HTO performed with 3D planning and PSI cutting guides and the first 12 non-supervised mOW-HTO performed with the standard technique. We recorded surgery time and fluoroscopic time. We calculated the variation (Δ delta) between the planned target and the postoperative result for Hip Knee Ankle Angle (HKA), mechanical medial Proximal Tibia Angle (MPTA), Joint Line Convergence Angle (JLCA) and tibial slope (TS) and compared it both groups. We also recorded the complication rate. We then calculated the learning curves for surgery time, number of fluoroscopic shots, Δ from target in both groups. CUSUM analysis charts for learning curves were applied between the two groups. Mean surgical time and mean number of fluoroscopic shots were lower in PSI group (48.58±7.87 vs. 58.75±6.86 min; p=0.034 and 10.75±3.93 vs. 18.16±4.93 shots; p<0.001). The postoperative ΔHKA was 0.42±0.51° in PSI vs. 1.25±0.87° in conventional, p=0.005. ΔMPTA was 0.50±0.67° in PSI vs. 3.75±1.48° in conventional, p<0.001; ΔTS was 1.00±0.82° in PSI vs. 3.50±1.57° in conventional, p<0.001. ΔJLCA was 1.83±1.11° in PSI vs. 4±1.41° in conventional, p<0.001. The CUSUM analysis favoured PSI group regarding surgery time (p=0.034) and number of shots (p<0.001) with no learning curve effect for ΔHKA, ΔMPTA, ΔJLCA and ΔTS. PSI cutting guides and 3D planning for HTO are effective in reducing the learning curves for operation time and number of fluoroscopic shots. Accuracy of the procedure has been elevated since the first cases.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.