Abstract
A wealth of causal relationships exists in biological systems, both causal brain networks and causal protein signaling networks are very classical causal biological networks (CBNs). Learning CBNs from biological signal data reliably is a critical problem today. However, most of the existing methods are not excellent enough in terms of accuracy and time performance, and tend to fall into local optima because they do not take full advantage of global information. In this paper, we propose a parallel ant colony optimization algorithm to learn causal biological networks from biological signal data, called PACO. Specifically, PACO first maps the construction of CBNs to ants, then searches for CBNs in parallel by simulating multiple groups of ants foraging, and finally obtains the optimal CBN through pheromone fusion and CBNs fusion between different ant colonies. Extensive experimental results on simulation data sets as well as two real-world data sets, the fMRI signal data set and the Single-cell data set, show that PACO can accurately and efficiently learn CBNs from biological signal data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.