Abstract

Estimation of spacecraft pose is essential for many space missions, such as formation flying, rendezvous, docking, repair, and space debris removal. We propose a learning-based method with uncertainty prediction to estimate the pose of a spacecraft from a monocular image. We first used a spacecraft detection network (SDN) to crop out the rectangular area in the original image where only spacecraft exist. A keypoint detection network (KDN) was then used to detect 11 pre-selected keypoints with obvious features from the cropped image and predict uncertainty. We propose a keypoints selection strategy to automatically select keypoints with higher detection accuracy from all detected keypoints. These selective keypoints were used to estimate the 6D pose of the spacecraft with the EPnP algorithm. We evaluated our method on the SPEED dataset. The experiments showed that our method outperforms heatmap-based and regression-based methods, and our effective uncertainty prediction can increase the final precision of the pose estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.