Abstract
Low-dose-rate prostate brachytherapy treatment takes place by implantation of small radioactive seeds in and sometimes adjacent to the prostate gland. A patient specific target anatomy for seed placement is usually determined by contouring a set of collected transrectal ultrasound images prior to implantation. Standard-of-care in prostate brachytherapy is to delineate the clinical target anatomy, which closely follows the real prostate boundary. Subsequently, the boundary is dilated with respect to the clinical guidelines to determine a planning target volume. Manual contouring of these two anatomical targets is a tedious task with relatively high observer variability. In this work, we aim to reduce the segmentation variability and planning time by proposing an efficient learning-based multi-label segmentation algorithm. We incorporate a sparse representation approach in our methodology to learn a dictionary of sparse joint elements consisting of images, and clinical and planning target volume segmentation. The generated dictionary inherently captures the relationships among elements, which also incorporates the institutional clinical guidelines. The proposed multi-label segmentation method is evaluated on a dataset of 590 brachytherapy treatment records by 5-fold cross validation. We show clinically acceptable instantaneous segmentation results for both target volumes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have