Abstract
As an innovative and computational imaging technique, it is critical for single-pixel imaging (SPI) to achieve a high reconstruction quality. However, the reconstruction image quality in conventional SPI is heavily dependent on the sampling rate. In this work, we present a learning-based SPI approach for high-quality image reconstruction under a low sampling rate. A bucket detector included in our optical setup is used to collect the one-dimensional (1D) signals reflected from a two-dimensional (2D) object and an end-to-end generative adversarial network (EGAN) which is pre-trained with simulated data is utilized to implement the reconstruction of the object. The results show that the proposed approach is able to produce high quality approximations of 2D images from optically collected 1D bucket signals at a very low sampling ratio. It can also be shown a better performance can be achieved by compared with previous studies on the same dataset, such as conventional SPI, compressive-sensing ghost imaging (CSGI) and U-net-based SPI approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.