Abstract

Identification of minimal residual disease (MRD) is important in assessing the prognosis of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). The current best clinical practice relies heavily on Flow Cytometry (FC) examination. However, the current FC diagnostic examination requires trained physicians to perform lengthy manual interpretation on high-dimensional FC data measurements of each specimen. The difficulty in handling idiosyncrasy between interpreters along with the time-consuming diagnostic process has become one of the major bottlenecks in advancing the treatment of hematological diseases. In this work, we develop an automatic MRD classifications (AML, MDS, normal) algorithm based on learning a deep phenotype representation from a large cohort of retrospective clinical data with over 2000 real patients' FC samples. We propose to learn a cytometric deep embedding through cell-level autoencoder combined with specimen-level latent Fisher-scoring vectorization. Our method achieves an average AUC of 0.943 across four different hematological malignancies classification tasks, and our analysis further reveals that with only half of the FC markers would be sufficient in obtaining these high recognition accuracies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.