Abstract

Deep learning methods have achieved attractive performance in dynamic MR cine imaging. However, most of these methods are driven only by the sparse prior of MR images, while the important low-rank (LR) prior of dynamic MR cine images is not explored, which may limit further improvements in dynamic MR reconstruction. In this paper, a learned singular value thresholding (Learned-SVT) operator is proposed to explore low-rank priors in dynamic MR imaging to obtain improved reconstruction results. In particular, we put forward a model-based unrolling sparse and low-rank network for dynamic MR imaging, dubbed as SLR-Net. SLR-Net is defined over a deep network flow graph, which is unrolled from the iterative procedures in the iterative shrinkage-thresholding algorithm (ISTA) for optimizing a sparse and LR-based dynamic MRI model. Experimental results on a single-coil scenario show that the proposed SLR-Net can further improve the state-of-the-art compressed sensing (CS) methods and sparsity-driven deep learning-based methods with strong robustness to different undersampling patterns, both qualitatively and quantitatively. Besides, SLR-Net has been extended to a multi-coil scenario, and achieved excellent reconstruction results compared with a sparsity-driven multi-coil deep learning-based method under a high acceleration. Prospective reconstruction results on an open real-time dataset further demonstrate the capability and flexibility of the proposed method on real-time scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call