Abstract

Experts predict that future robot applications will require safe and predictable operation: robots will need to be able to explain what they are doing to be trusted. To reach this goal, they will need to perceive their environment and its object to better understand the world and the tasks they have to perform. This article gives an overview of present advances with the focus on options to learn, detect, and grasp objects. With the approach of colour and depth (RGB-D) cameras and the advances in AI and deep learning methods, robot vision has been pushed considerably over the last years. We summarise recent results for pose estimation of objects and work on verifying object poses using a digital twin and physics simulation. The idea is that any hypothesis from an object detector and pose estimator is verified leveraging on the continuous advances in deep learning approaches to create object hypotheses. We then show that the object poses are robust enough such that a mobile manipulator can approach the object and grasp it. We intend to indicate that it is now feasible to model, recognise and grasp many objects with good performance, though further work is needed for applications in industrial settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call