Abstract

A leaky-Vivaldi antenna covered with metasurface (LVAM) is proposed in this paper. The traditional Vivaldi antenna covered with metasurface realizes backward frequency beam-scanning from -41∘ to 0∘ in the high-frequency operating band (HFOB) and retains aperture radiation in the low-frequency operating band (LFOB). In the LFOB, the metasurface can be regarded as a transmission line to realize a slow-wave transmission. In the HFOB, the metasurface can be considered a 2D periodic leaky-wave structure to realize a fast-wave transmission. The simulated results show that LVAM has the -10 dB return loss bandwidths of 46.5% and 40.0%, and the realized gain of 8.8-9.6 dBi and 11.8-15.2 dBi cover the 5 G Sub-6 GHz band (3.3-5.3 GHz) and the X band (8.0-12.0 GHz), respectively. The test results are in good agreement with the simulated results. As a dual-band antenna covering the 5 G Sub-6 GHz communication band and military radar band, the proposed antenna can guide the future integrated design of communication and radar antenna systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call