Abstract

We propose a methodology and power models for an accurate high-level power estimation of physically partitioned and power-gated SRAM arrays. The models offer accurate estimation of both dynamic and leakage power, including the power dissipation due to emerging leakage mechanisms such as gate oxide tunneling, for partitioned arrays that deploy data-retaining sleep techniques for leakage reduction. Using the proposed methodology, dynamic, leakage and total power of partitioned SRAM arrays can be estimated with a 97% accuracy in comparison to the power obtained by running full circuit-level simulations

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.