Abstract

Minimizing unwanted leakage between stationary and rotating parts is the main function of annular seals. A Mixed labyrinth seal (MLS) with two specially designed lateral teeth installed on a Staggered labyrinth seal (SLS) is proposed to improve seal performance. A 3D computational fluid dynamics calculation model of MLS is set up. The twin vortex structure that appears in the seal cavity and flow path is more complicated in MLS than in SLS. MLS reduces leakage by about 30 % compared with SLS. Rotordynamic analysis of MLS is also conducted by calculating cross-coupled stiffness. The cross-coupled stiffness of MLS is about 75 % to 85 % that of SLS. The dependence of seal performance on the parameters of the lateral teeth is investigated through a simulation test. The lateral teeth should be set in the middle of the seal cavity, and the gap between the two lateral teeth should be similar to the tip clearance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.