Abstract

To achieve higher aerodynamic performance, turbine usually works at tight clearance, which results in inevitable rub between the rotor and stator parts of labyrinth seal due to vibrations, misalignment, mechanical force, thermal stress, etc. In the rubbing events, contact between labyrinth fin and rotor part will commonly induce the teeth bending and mushrooming damages, which significantly affect the discharge performance of a labyrinth seal. To account for the influence of teeth bending and mushrooming on leakage performance of a straight-through labyrinth seal, the leakage rates and flow fields in the worn labyrinth seal are measured and also compared with the original design cases. With numerical methods, the discharge behaviors of the labyrinth seal with different degrees of bending and mushroom damages are analyzed. It shows that the predicted leakage performance and flow fields in the labyrinth seals match well with the experimental tests. For the bending cases, the leakage rates and flow patterns in labyrinth seals are dependent on the effective clearance and bending angle. The leakage ratio of forward bending case is smaller than that of backward bending case with the same geometrical dimensions. However, for the mushroomed labyrinth seals, the leakage rates and flow patterns are much dependent on the effective clearance but slightly dependent on the mushroom radius.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call