Abstract

Transient pressure wave detection analysis to detect the location of leakage of non-isothermal flow in an inclined pipeline containing hydrogen-natural gas mixture is investigated. The governing equations are solved using the reduced order modelling technique. The effects of inclination angles, mass ratio of gas mixture and temperature change on the pressure and celerity waves in an inclined pipeline are discussed. The solutions for isothermal flow in a horizontal pipeline show good agreement with published results. For non-isothermal flow an increase in the mass ratio lead to an increase in the pressure and celerity waves, while the leak location and amount of leak discharge decrease. However, it is noted that the amount of leak discharge is still higher than that of isothermal flow. It is also observed that an increase in the inclination angle increases the pressure drop and leak discharge but the celerity wave and the leak location do not seem to be affected. Thus, to reduce the leak discharge, the inclination angle of the pipeline should be reduced and further, to ensure that leakage does not occur before the calculated leak position, the mass ratio of hydrogen to natural gas should not be more than 0.5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.