Abstract

AbstractElevation gradients are frequently treated as useful space‐for‐time substitutions for inferring trait variations in response to different environmental conditions. The independent variations in leaf traits in response to elevation are well understood, but far less is known about trait covariation and its controls. This limits our understanding of the principles and mechanisms of leaf trait covariation, especially along elevation gradients in subtropical forests. Here, we studied the covariation among seven functional traits, including leaf size (LS), leaf nitrogen per unit mass (Nmass), leaf nitrogen per unit area (Narea), leaf mass per area (LMA), leaf dry matter content (LDMC), leaf thickness (LT) and the leaf internal‐to‐ambient CO2 ratio (Ci:Ca, termed χ). Sampling was conducted on 41 species in a subtropical forest on Mount Huangshan, China, and the data were analyzed using multivariate analysis and variance partitioning procedures. We found that (a) The first three principal components captured 79% of the total leaf trait covariation, which was caused mainly by within site differences; (b) Nmass and LDMC were positively correlated with soil water content (SW) and negatively correlated with vapor pressure deficit (VPD), while χ showed negative relationships with elevation; and (c) 78% of the variation in the studied plant functional traits could be explained by climate, soil, and family controls in combination, while family distribution was the most important determining factor for trait covariation along the elevation gradient. Our findings provide relevant insights into plant adaptation to environmental gradients and present useful guidelines for ecosystem management and planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.