Abstract
AbstractFor plant resistance that is induced rather than constitutive, the precise timing of a sequence of events must be considered (i.e., initial detection of the insect by the plant's surveillance systems, up‐regulation of signaling and defense pathways, achievement of effective levels of defense, and finally down‐regulation of signaling and defense). Here, we provide a timeline for the interaction between resistant wheat (Triticum aestivum L.) (Poaceae) and the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). To create this timeline, we measured the daily growth of the third, fourth, and fifth leaves of susceptible and resistant plants. Because each leaf had a different spatial relationship to the site of larval attack (i.e., the sheath epidermal cells of the third leaf) and a different pattern of growth relative to the 3–5 days that larvae attacked resistant plants, we learned different things from each leaf. The third leaf shows how quickly responses of susceptible and resistant plants diverge (i.e., 36–60 h after initial larval attack). The fourth leaf shows that, for both susceptible and resistant plants, negative effects of larval attack extend beyond the third leaf. These negative effects are more severe for susceptible plants, but even in resistant plants continue for several days after larvae have died. The fifth leaf is interesting because it shows how rapidly the resistant plant recovers from larval attack. Thus, 204–348 h after initial attack, a time when the fourth leaf of resistant plants is showing reduced growth and the fifth leaf of susceptible plants is showing zero growth, the fifth leaf of resistant plants shows a small increase in growth. Grasses with resistance gene‐mediated resistance may have a two‐fold strategy, using resistance mechanisms to stop Hessian fly larvae from further attack and tolerance mechanisms to protect resources for future plant growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.