Abstract

BackgroundHessian fly (Mayetiola destructor), a member of the gall midge family, is one of the most destructive pests of wheat (Triticum aestivum) worldwide. Probing of wheat plants by the larvae results in either an incompatible (avirulent larvae, resistant plant) or a compatible (virulent larvae, susceptible plant) interaction. Virulent larvae induce the formation of a nutritive tissue, resembling the inside surface of a gall, in susceptible wheat. These nutritive cells are a rich source of proteins and sugars that sustain the developing virulent Hessian fly larvae. In addition, on susceptible wheat, larvae trigger a significant increase in levels of amino acids including proline and glutamic acid, which are precursors for the biosynthesis of ornithine and arginine that in turn enter the pathway for polyamine biosynthesis.ResultsFollowing Hessian fly larval attack, transcript abundance in susceptible wheat increased for several genes involved in polyamine biosynthesis, leading to higher levels of the free polyamines, putrescine, spermidine and spermine. A concurrent increase in polyamine levels occurred in the virulent larvae despite a decrease in abundance of Mdes-odc (ornithine decarboxylase) transcript encoding a key enzyme in insect putrescine biosynthesis. In contrast, resistant wheat and avirulent Hessian fly larvae did not exhibit significant changes in transcript abundance of genes involved in polyamine biosynthesis or in free polyamine levels.ConclusionsThe major findings from this study are: (i) although polyamines contribute to defense in some plant-pathogen interactions, their production is induced in susceptible wheat during interactions with Hessian fly larvae without contributing to defense, and (ii) due to low abundance of transcripts encoding the rate-limiting ornithine decarboxylase enzyme in the larval polyamine pathway the source of polyamines found in virulent larvae is plausibly wheat-derived. The activation of the host polyamine biosynthesis pathway during compatible wheat-Hessian fly interactions is consistent with a model wherein the virulent larvae usurp the polyamine biosynthesis machinery of the susceptible plant to acquire nutrients required for their own growth and development.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-014-0396-y) contains supplementary material, which is available to authorized users.

Highlights

  • Hessian fly (Mayetiola destructor), a member of the gall midge family, is one of the most destructive pests of wheat (Triticum aestivum) worldwide

  • The present study focuses on the polyamine biosynthesis pathways in both wheat and Hessian fly larvae during compatible and incompatible interactions

  • Polyamine levels increase in susceptible wheat and virulent Hessian fly larvae Metabolite profiling using HPLC detected differences in the free polyamine levels between resistant and susceptible wheat plants following Hessian fly larval attack (Figure 2a-c)

Read more

Summary

Introduction

Hessian fly (Mayetiola destructor), a member of the gall midge family, is one of the most destructive pests of wheat (Triticum aestivum) worldwide. Virulent larvae induce the formation of a nutritive tissue, resembling the inside surface of a gall, in susceptible wheat. These nutritive cells are a rich source of proteins and sugars that sustain the developing virulent Hessian fly larvae. Polyamines are ubiquitous, low-molecular-weight aliphatic polycations that play a vital role in regulating gene expression, signal transduction, ion-channel function, DNA and protein synthesis as well as cell proliferation and differentiation [1]. They scavenge reactive oxygen species thereby protecting DNA, proteins, and lipids from oxidative. In an incompatible interaction between barley and powdery mildew (Blumeria graminis f. sp. hordei), levels of free and conjugated spermidine and putrescine as well as activity of ODC, ADC and SAMDC enzymes increased, three days after inoculation [17]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call