Abstract

An idealized model was developed to describe leaf CO(2) exchange in the leguminous tree Erythrina poeppigiana (Walpers) O.F. Cook under well-watered field conditions. Photosynthetic rate in mature leaves (p) was modeled as a rectangular hyperbolic function of photon flux density (q) and ambient CO(2) concentration (c(a)), relative photosynthetic capacity (pi) was modeled as a logistic s-function of leaf age (l(a)), metabolic dark respiration rate (r(m)) was modeled as an exponential function of leaf temperature (T(l)), and photorespiration rate (r(p)) was modeled as a hyperbolic function of c(a). Assimilation rate (a(c)) was modeled as the difference between the product of p and pi and the sum of r(m) and r(p): a(c) = p(q,c(a))pi(l(a)) - [r(m)(T(l)) + r(p)(c(a))]. The model parameters were estimated separately for five sources of E. poeppigiana (Clones 2660, 2662, 2687 and 2693 and half-sib Family 2431) from field data measured with a portable closed-loop gas exchange system at a humid tropical site in Costa Rica. The between-source differences in leaf CO(2) exchange characteristics were small, but statistically significant. Aboveground biomass production was highest in sources that maintained high relative photosynthetic capacity throughout the leaf life span. Quantum yield varied between 0.046 and 0.067, and light-saturated assimilation rate (q = 2000 micro mol m(-2) s(-1) and T(l) = 28 degrees C) at natural atmospheric c(a) (350 micro mol mol(-1)) was 16.8-19.9 micro mol m(-2) s(-1). Increasing c(a) to 1000 micro mol mol(-1) resulted in an approximate doubling of the light-saturated assimilation rate. Foliole nitrogen concentration, which was 45.3-51.2 mg g(-1) in mature leaves, was positively correlated with relative photosynthetic capacity. Foliole nitrogen concentration, quantum yield and maximum assimilation rate of E. poeppigiana are among the highest values observed in tropical woody legumes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.