Abstract
In order to promote an in-depth understanding of the mechanism of leading-edge flow separation control over an airfoil using a symmetrical Dielectric Barrier Discharge (DBD) plasma actuator excited by a steady-mode excitation, an experimental investigation of an SC (2)-0714 supercritical airfoil with a symmetrical DBD plasma actuator was performed in a closed chamber and a low-speed wind tunnel. The plasma actuator was mounted at the leading edge of the airfoil. Time-resolved Particle Image Velocimetry (PIV) results of the near-wall region in quiescent air suggested that the symmetrical DBD plasma actuator could induce some coherent structures in the separated shear layer, and these structures were linked to a dominant frequency of f0 = 39 Hz when the peak-to-peak voltage of the plasma actuator was 9.8 kV. In addition, an analysis of flow structures without and with plasma actuation around the upper side of the airfoil at an angle of attack of 18° for a wind speed of 3 m/s (Reynolds number Re = 20000) indicated that the dynamic process of leading-edge flow separation control over an airfoil could be divided into three stages. Initially, this plasma actuator could reinforce the shedding vortices in the separated shear layer. Then, these vortical structures could deflect the separated flow towards the wall by promoting the mixing between the outside flow with a high kinetic energy and the flow near the surface. After that, the plasma actuator induced a series of rolling vortices in the vicinity of the suction side of the airfoil, and these vortical structures could transfer momentum from the leading edge of the airfoil to the separated region, resulting in a reattachment of the separated flow around the airfoil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.