Abstract

A proven computational methodology was applied to investigate film cooling from diffused holes on the simulated leading edge of a turbine airfoil. The short film-hole diffuser section was conical in shape with a shallow half-angle, and was joined to a plenum by a cylindrical metering section. The diffusion resulted in a film-hole breakout area of 2.5 times that of a cylindrical hole. In the present paper, predictions of adiabatic effectiveness for the cases with diffused holes are compared to results for standard cylindrical holes, and performance is analyzed in the context of extensive flowfield data. The leading edge surface was elliptic in shape to accurately model a turbine airfoil. The geometry consisted of one row of holes centered on the stagnation line, and two additional rows located 3.5 hole (metering section) diameters downstream on either side of the stagnation line. Film holes in the downstream rows were centered laterally between holes in the stagnation row. All holes were angled at 20 deg with the leading edge surface, and were turned 90 deg with respect to the streamwise direction (radial injection). The average blowing ratio was varied from 1.0 to 2.5, and the coolant-to-mainstream density ratio was equal to 1.8. The steady Reynolds-averaged Navier-Stokes equations were solved with a pressure-correction algorithm on an unstructured, multi-block grid containing 4.6 million finite-volumes. A realizable k-ε turbulence model was employed to close the equations. Convergence and grid-independence was verified using strict criteria. Based on the laterally averaged effectiveness over the leading edge, the diffused holes showed a marked advantage over standard holes through the range of blowing ratios. However, ingestion of hot crossflow and thermal diffusion into the second row of film holes was observed to cause significant, and potentially detrimental, heating of the film-hole walls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call