Abstract

Manipulating working memory (WM) is a central yet challenging notion. Previous studies suggest that WM items with varied memory strengths reactivate at different latencies, supporting a time-based mechanism. Motivated by this view, here we developed a purely bottom-up "Leader-Follower" behavioral approach to manipulate WM in humans. Specifically, task-irrelevant flickering color disks that are bound to each of the memorized items are presented during the delay period, and the ongoing luminance sequences of the color disks follow a Leader-Follower relationship, that is, a hundreds of milliseconds temporal lag. We show that this dynamic behavioral approach leads to better memory performance for the item associated with the temporally advanced luminance sequence (Leader) than the item with the temporally lagged luminance sequence (Follower), yet with limited effectiveness. Together, our findings constitute evidence for the essential role of temporal dynamics in WM operation and offer a promising, noninvasive WM manipulation approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call