Abstract

New product development is an important business process and constitutes a major contributor to the business excellence of any manufacturing firm. Designing an optimized new product development process is an important problem in itself and is of significant practical and research interest. Lead time is an important performance metric for a product development organization. We develop lead time models for product development organizations that involve multiple, concurrent projects with contention for human/technical resources. The objective is to explore how the lead times call be reduced using efficient scheduling, input control, load balancing, and variability reduction. The models are based on single class and multiclass queueing networks and capture important facets of a product development organization. Within the new product development process, we focus attention on the product design process. Two product design organizations, which we call Company ABC and Company XYZ, provide the real-world setting for our model-based lead time reduction. First, we present a coarse, conceptual queueing network model of Company ABC and show how rapid performance analysis can be used to explore opportunities for accelerating the design process. In particular, we show how effective input control, process control, load balancing, and cross-functional work can cut the lead times. Next, we present multiclass queueing network models for both the companies ABC and XYZ. The re-entrant line models show up certain scheduling issues pertaining to internal flows in the product design network. Using a class of fluctuation smoothing scheduling policies, we demonstrate how lead times can be reduced appreciably, without committing additional resources. The models presented are sufficiently generic and conceptual, and will be of much value in project planning and management in product design organizations and also more generally in product development organizations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.