Abstract

The aim of this study was to determine the impact of lead (Pb) stress as 0.6mM Pb(NO3)2 on the content of free, thylakoid- and chromatin-bound polyamines (PAs) and diamine oxidase (DAO) activity in detached greening barley leaves. Additionally, photosynthetic-related parameters, generation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content and ultrastructural changes under Pb-stress were studied. The level of putrescine (Put) was reduced progressively to 56% at 24h of Pb stress, and it was correlated with 38% increase of DAO activity. Spermidine (Spd) content was not affected by Pb-stress, while the free spermine (Spm) level significantly increased by about 83% at 6h, and in that time the lowest level of H2O2 was observed. The exogenous applied Spm to Pb-treated leaves caused a decrease in the content of H2O2. In greening leaves exposed to Pb an accumulation of chlorophylls a and b was inhibited by about 39 and 47%, respectively, and photosynthetic parameters of efficiency of electron transport and photochemical reaction in chloroplasts as ΦPSII, ETR and RFd were lowered by about 23–32%. The level of thylakoid-bound Put decreased by about 22%. Moreover, thylakoids isolated from chloroplasts of Pb-treated leaves were characterized with lower Put/Spm ratio as compared to control leaves. In the presence of Pb the significant decrease in the number of thylakoids per granum and cap-shape invaginations of cytoplasmic material were noticed. In Pb-stressed leaves the level of chromatin-bound Spm increased by about 48% and sometimes condensed chromatin in nuclei was observed. We conclude that in greening barley leaves exposed to Pb-stress changes in free, thylakoid- and chromatin-bound PAs play some role in the functioning of leaves or plants in heavy metal stress conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.