Abstract

Low-cost solution-processed lead chalcogenide colloidal quantum dots (CQDs) have garnered great attention in photovoltaic (PV) applications. In particular, lead selenide (PbSe) CQDs are regarded as attractive active absorbers in solar cells due to their high multiple-exciton generation and large exciton Bohr radius. However, their low air stability and occurrence of traps/defects during film formation restrict their further development. Air-stable PbSe CQDs are first synthesized through a cation exchange technique, followed by a solution-phase ligand exchange approach, and finally absorber films are prepared using a one-step spin-coating method. The best PV device fabricated using PbSe CQD inks exhibits a reproducible power conversion efficiency of 10.68%, 16% higher than the previous efficiency record (9.2%). Moreover, the device displays remarkably 40-day storage and 8 h illuminating stability. This novel strategy could provide an alternative route toward the use of PbSe CQDs in low-cost and high-performance infrared optoelectronic devices, such as infrared photodetectors and multijunction solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.