Abstract

Using β-FeSi2 as the bottom absorber of triple-junction thin-film solar cells is investigated by a numerical method for widening the long-wave spectral response. The presented results show that the β-FeSi2 subcell can contribute 0.273 V of open-circuit voltage to the a-Si/μc-Si/μ-FeSi2 triple-junction thin-film solar cell. The optimized absorber thicknesses for a-Si, μc-Si, and β-FeSi2 subcells are 260 nm, 900 nm, and 40 nm, respectively. In addition, the temperature coefficient of the conversion efficiency of the a-Si/μc-Si/β-FeSi2 cell is −0.308%/K, whose absolute value is only greater than that of the a-Si subcell. This result indicates that the a-Si/μc-Si/β-FeSi2 triple-junction solar cell has a good temperature coefficient. As a result, using β-FeSi2 as the bottom absorber can improve the thin-film solar cell performance, and the a-Si/βc-Si/β-FeSi2 triple-junction solar cell is a promising structure configuration for improving the solar cell efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.