Abstract

Lead-salt diode lasers are useful for spectroscopic applications in the 2.5–30 μm wavelength range. These devices have previously required cryogenic cooling <100 K) for CW operation. The use of quantum well, large optical cavity structures has improved the operating temperatures to 174 K CW (at 4.39 μm) and to 270 K pulsed (at 3.88 μm). These diodes have a single PbTe quantum well with lattice-matched Pb 1−xEu xSe yTe 1−y confinement layers grown by molecular beam epitaxy. The emission energy shifts have been calculated using a finite square well with nonparabolicity effects included. Initial work has also been done on multiple quantum well lasers. The maximum operating temperatures were comparable to those of single quantum well lasers, with leakage current and possibly Auger recombination limiting device performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.