Abstract

Previously synthesized tubulin inhibitors showed promising in vitro selectivity and activity against Human African Trypanosomiasis. Current aim is to improve the ligand efficiency and reduce overall hydrophobicity of the compounds, by lead optimization. Via combinatorial chemistry, 60 new analogs were synthesized. For biological assay Trypanosoma brucei brucei Lister 427 cell line were used as the parasite model and for the host model human embryonic kidney cell line HEK-293 and mouse macrophage cell line RAW 264.7 were used to test efficacy. Of the newly synthesized compounds 5, 39, 40, and 57 exhibited IC50s below 5 µM inhibiting the growth of trypanosome cells and not harming the mammalian cells at equipotent concentration. Comparably, the newly synthesized compounds have a reduced amount of aromatic moieties resulting in a decrease in molecular weight. Due to importance of tubulin polymerization during protozoan life cycle its activity was assessed by western blot analyses. Our results indicated that compound 5 had a profound effect on tubulin function. A detailed structure activity relationship (SAR) was summarized that will be used to guide future lead optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.