Abstract
AbstractLead‐free halide perovskites is a novel class of environment‐friendly nonlinear optical materials, that already demonstrate high potential for second harmonics generation (SHG). Here a synthesis protocol is optimized to create single‐crystal CsGeI3 nanoparticles (NPs) supporting optical Mie resonances that efficiently convert infrared light to visible both via lasing and SHG mechanisms. Such high‐quality resonant NPs allow us to achieve up‐conversion lasing in the broadband excitation wavelength (1200–1520 nm), which is accompanied by efficient spectrally tunable SHG with intensity comparable with that for lasing depending on temperature. Experimental and theoretical study of linear and nonlinear optical properties of CsGeI3 material in the form of high‐quality thin film and NPs of different sizes reveal that coupling incident light with a magnetic dipole resonance leads to a strong enhancement of SHG by one order of magnitude. As a result, the study provides a novel strategy where individual NPs can support both up‐conversion lasing and SHG in a broad range of excitation wavelengths.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have