Abstract
AbstractRubber composites with excellent radiation shielding and flexibility are extremely important to personal protective equipments (PPEs) for protecting workers from radiation hazards, especially for mixed radiations. It is, however, challenging to achieve uniform dispersion of fillers and good compatibility of the interfaces in highly‐filled rubber composites that are closely related to their physical properties. In this article, lead borate@polydopamine (PBO@PDA) core–shell particles are chemically bonded with silicone rubber (SR) for co‐shielding of neutron and γ‐rays. Uniform dispersion of the core–shell particles and good compatibility of the interfaces give rise to enhanced flexibility of the rubber composites. Particularly, the SR composite with 40 wt% PBO particles displays increases of 106% in elongation at break and 490% in tensile strength to neat SR. Furthermore, the mass attenuation coefficient of γ‐rays (105 KeV) reaches 2.35 and the thermal neutron absorption rate (0.025 eV) of is 76.9%. This work takes into account the balance between radiation shielding and flexibility of rubber composites, which provides a facile strategy to fabricate excellent integrated properties of flexible materials for shielding mixed neutron and γ‐rays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.