Abstract

AbstractFlexible materials with excellent radiation shielding and flexibility are essential to the personal protective equipments (PPEs) for protecting workers from nuclear radiations. However, it is an enormous challenge to obtain the desired materials since high loading filler in polymer nanocomposites usually promotes radiation shielding while restrains its flexibility. Here, a facile “thiol‐ene click” means is applied to chemically bond high loading boron nitride (BN) nanoparticles with silicone rubber (SR) in SR/BN nanocomposites for thermal neutron shielding. Uniform dispersion of BN nanoparticles and good compatibility of interfaces in the nanocomposites with high loading filler lead to increased flexibility instead of decrease. In particular, the nanocomposite with 40 wt% BN displays 911% of elongation at break that is about 50% enhancement to that of neat SR. Furthermore, higher loading BN in the nanocomposites means better thermal neutron shielding. Namely, enhanced thermal neutron shielding and flexibility is achieved at SR/BN nanocomposite with 40 wt% BN. The present work provides a facile strategy towards superior integrated performance of flexible materials for radiation shielding, such as wearable devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.