Abstract

The leaching behavior of metals such as copper, zinc, lead and tin from waste printed circuit boards (PCBs) has been investigated using electro-generated chlorine in hydrochloric acid solution. The experiments were carried out by employing two different reactors: (a) a combined reactor facilitated with simultaneous Cl 2 generation and metal leaching, and (b) a separate metal leaching reactor connected with the anode compartment of a Cl 2 gas generator. Leaching efficiency in two reactors was compared for recycling of valuable metals from the PCBs. It was observed that the leaching rate of the metals increased with increase in current density, temperature and time in both reactors. The copper leaching rate gradually diminished when its dissolution was around 20 and 25% in the combined and separate reactor, respectively, which may be attributed to a decrease in surface area of copper with leaching time and the formation of CuCl (s) on the surface. The leaching efficiency of copper was found to be lower in the combined reactor than that of the separate reactor. The dissolution kinetics of copper with electro-generated chlorine followed empirical logarithmic law controlled by surface layer diffusion. The leaching mechanism of copper was further corroborated by SEM-EDS study of the residue. The activation energy for copper leaching in the combined and separate reactors was calculated to be 24.5 and 20.7 kJ/mol, respectively in the temperature range 298–323 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.