Abstract
AbstractChina is the largest coal ash producer in the world. Hydraulic ash transport systems are used in most coal‐fired power plants, which lead to serious water pollution due to leaching of trace elements. The investigation on the leaching behavior of trace contaminants from coal ash is critical to environmental risk assessments. Batch leaching tests have been performed on the fly ash collected from each field of the electrostatic precipitator (ESP) of a coal‐fired power plant to study the leaching characteristics of Cd, Cr, Pb and V. Leaching solutions included HCl solution of initial pH = 4 and NaOH solution of pH = 10. The liquid/solid (L/S) ratio was about 4:1 in all leaching tests. Fourteen leaching time intervals were selected, ranging from 15 min to 7 days. The results show that under studied experimental conditions, Cr has a relatively higher leachability in the acid‐leaching solution, while Pb has a higher leachability in the alkaline solution. With the increase of leaching time, the leachability of Cr in each ash sample increases obviously. Within the same time interval, Cr in the ash sample from the last field of ESP has the highest leachability. The concentration of Cd in FA3 is the highest, but the leachability of Cd for FA3 is not the highest among the three ash samples. The concentration of V in FA1 is the highest; no increased trend with leaching time has been found in the experiment. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.