Abstract
A series of LCAO SCF calculations with Slater-type atomic orbitals were performed for the NH3 molecule over a range of bond lengths and angles (keeping at least C3v symmetry). In addition to a minimal basis set (with two different values for the hydrogen 1s orbital exponent), two types of extended basis sets were examined for the planar and the experimental equilibrium configurations. One of these consisted of a ``double zeta'' set on N and one 1s function on each H (with exponent 1.20), while the other involved a minimal set augmented by four ``bond orbitals''−2s and 2p functions centered on N but having their maximum densities in the bond regions. The results for the minimal basis set are typical for this type of calculation, giving good ionization energies and an inversion barrier height which is twice the experimental value. The extended basis sets, though giving fairly low total energies, resulted in an excessive concentration of charge on the nitrogen atom, with a high dipole moment and a zero, or even small negative, inversion ``barrier''. Direct calculations were also performed for the NH3+ ion in the pyramidal and planar configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.