Abstract
AbstractA computational scheme based on a “mixed basis set” approach is applied to the study of the structure and the energetics in proton transfer systems. Five hydrogen‐bonded systems of the type (CH3HnA ‥ H ‥ BHmCH3)+, where A and B can be N, O, or S, have been investigated with various minimal and extended basis sets. Calculations with the extended basis set yield double‐well potential energy curves, which the minimal basis set is unable to reproduce. Calculations with the mixed basis set, constructed from an extended basis set on the atoms engaged in the hydrogen transfer part and a minimal basis set on the rest of the molecule, give predictions of geometries, potential energy curves, and relative energies similar to the results from the extended basis set. Inclusion of polarization functions in the mixed basis set becomes essential in systems that contain third row atoms. This scheme should become useful in studies of large molecules in which different parts can be represented at different levels of computational complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.