Abstract

Forensic odontology is regarded as an important branch of forensics dealing with human identification based on dental identification. This paper proposes a novel method that uses deep convolution neural networks to assist in human identification by automatically and accurately matching 2-D panoramic dental X-ray images. Designed as a top-down architecture, the network incorporates an improved channel attention module and a learnable connected module to better extract features for matching. By integrating associated features among all channel maps, the channel attention module can selectively emphasize interdependent channel information, which contributes to more precise recognition results. The learnable connected module not only connects different layers in a feed-forward fashion but also searches the optimal connections for each connected layer, resulting in automatically and adaptively learning the connections among layers. Extensive experiments demonstrate that our method can achieve new state-of-the-art performance in human identification using dental images. Specifically, the method is tested on a dataset including 1,168 dental panoramic images of 503 different subjects, and its dental image recognition accuracy for human identification reaches 87.21% rank-1 accuracy and 95.34% rank-5 accuracy. Code has been released on Github. (https://github.com/cclaiyc/TIdentify).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.