Abstract
Age estimation plays a crucial role in various fields, including forensic science and anthropology. This study aims to develop and validate DentAge, a deep-learning model for automated age prediction using panoramic dental X-ray images. DentAge was trained on a dataset comprising 21,007 panoramic dental X-ray images sourced from a private dental center in Slovenia. The dataset included subjects aged 4 to 97 years with various dental conditions. Transfer learning was employed, initializing the model with ImageNet weights and fine-tuning on the dental image dataset. The model was trained using stochastic gradient descent with momentum, and mean absolute error (MAE) served as the objective function. Across the test dataset, DentAge achieved an MAE of 3.12 years, demonstrating its efficacy in age prediction. Notably, the model performed well across different age groups, with MAEs ranging from 1.94 (age group [10-20]) to 13.40 years (age group [90-100]). Visual evaluation revealed factors contributing to prediction errors, including prosthetic restorations, tooth loss, and bone resorption. DentAge represents a significant advancement in automated age prediction within dentistry. The model's robust performance across diverse age groups and dental conditions underscores its potential utility in real-world scenarios. Our model will be accessible to the public for further adjustments and validation, ensuring DentAge's effectiveness and trustworthiness in practical scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.