Abstract

Medical image segmentation often faces challenges related to overfitting, primarily due to the limited and complex training samples. This challenge often prompts the use of self-supervised learning and data augmentation. However, self-supervised learning requires well-defined hand-crafted tasks and multiple training stages. On the other hand, basic image augmentation techniques like cropping, rotation, and flipping, effective for natural scene images, have limited efficacy for medical images due to their isotropic nature.While regional dropout regularization data augmentation methods have proven effective in image recognition tasks, their application in image segmentation is not as extensively studied. Additionally, existing augmentation methods often operate on square regions, leading to the loss of crucial contour information. This is particularly problematic for medical image segmentation tasks dealing with regions of interest characterized by intricate shapes. In this work, we introduce LCAMix, a novel data augmentation approach designed for medical image segmentation. LCAMix operates by blending two images and their segmentation masks based on their superpixels, incorporating a local-and-contour-aware strategy. The training process on augmented images adopts two auxiliary pretext tasks: firstly, classifying local superpixels in augmented images using an adaptive focal margin, leveraging segmentation ground truth masks as prior knowledge; secondly, reconstructing the two source images using mixed superpixels as mutual masks, emphasizing spatial sensitivity. Our method stands out as a simple, one-stage, model-agnostic, and plug-and-play data augmentation solution applicable to various segmentation tasks. Notably, it requires no external data or additional models. Extensive experiments validate its superior performance across diverse medical segmentation datasets and tasks. The source codes are available at https://github.com/DanielaPlusPlus/DataAug4Medical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call