Abstract

The one-carbon cycle is composed of four major biologically important molecules: methionine (L-Met), S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and homocysteine (Hcy). In addition to these key metabolites, there are multiple enzymes, vitamins, and cofactors that play essential roles in the cascade of the biochemical reactions that convert one metabolite into another in the cycle. Simultaneous quantitative measurement of four major metabolites can be used to detect possible aberrations in this vital cycle. Abnormalities in the one-carbon cycle might lead to hyper- or hypomethylation, homocystinemia, liver dysfunction, and accumulation of white-matter hyperintensities in the human brain. Previously published methods describe evaluation of several components of the one-carbon cycle, but none to our knowledge demonstrated simultaneous measurement of all four key molecules (L-Met, SAM, SAH, and Hcy). We describe a novel analytical method suitable for simultaneous identification and quantification of L-Met, SAM, SAH, and Hcy with LC-MS/MS. Moreover, we tested this method to identify these metabolites in human plasma collected from patients with multiple sclerosis and healthy individuals. In a pilot feasibility study, our results indicate that patients with multiple sclerosis showed abnormalities in the one-carbon cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.