Abstract

Transient flow structures in a continuous casting mold can strongly influence the slag entrainment in liquid steel and the bubbles capture in the initial solidified shell, both of which are associated with the quality of the final product. This paper presents a numerical study of the turbulent flow with a top free surface in the continuous casting mold at a meso-scale level by a three-dimensional combined approach of Free Surface Lattice Boltzmann Method and Large Eddy Simulation (FSLBM-LES). The validity of the model is verified by the good agreement between the calculated results and the measurements from various water experiments in terms of the flow velocity and free surface profile. The mathematical model is then used to reveal the transient and spatiotemporal asymmetric characteristics associated with the transient flow field and the free surface fluctuation, although the steady state operation is considered during the continuous casting process. The results show that the locations of the jets of liquid steel from the two out ports of the Submerged Entry Nozzle (SEN) always fluctuate alternatively within a certain range, and periodically deviate from the design angle of the SEN within the same time period. The oscillating behavior of the jets promotes the asymmetric flow patterns and multi-scale vortices at both sides of the SEN. By introducing the Q-criterion in the results analysis, the formation, development, and shedding of the coherent structure (CS) of the turbulent flow are quantitatively characterized. The interaction between the transient flow patterns and the fluctuations of the top free surface as well as the evolution of the transient profile and velocities of the free surface are also demonstrated. The results obtained from the current study suggest that the FSLBM-LES model offers a promising way to study the complex flows and related transfer phenomena in the continuous casting process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.