Abstract

Electrochemical double layers (EDL) form at electrified interfaces. Whereas the Gouy-Chapman model describes moderately charged EDL, the formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by X-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer was confirmed by glancing-incidence in-plane diffraction measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call