Abstract

Abstract(Sc2O3)0.1(CeO2)0.01(ZrO2)0.89 (SCSZ) ceramic electrolyte has superior ionic conductivity in the intermediate temperature range (700–800 °C), but it does not exhibit good phase and chemical stability in comparison with 8 mol% Y2O3–ZrO2 (YSZ). To maintain high ionic conductivity and improve the stability in the whole electrolyte, layered structures with YSZ outer layers and SCSZ inner layers were designed. Because of a mismatch of coefficients of thermal expansion and Young's moduli of SCSZ and YSZ phases, upon cooling of the electrolytes after sintering, thermal residual stresses will arise, leading to a possible strengthening of the layered composite and, therefore, an increase in the reliability of the electrolyte. Laminated electrolytes with three, four, and six layers design were manufactured using tape‐casting, lamination, and sintering techniques. After sintering, while the thickness of YSZ outer layers remained constant at ∼30 μm, the thickness of the SCSZ inner layer varied from ∼30 μm for a Y–SC–Y three‐layered electrolyte, ∼60 μm for a Y–2SC–Y four‐layered electrolyte, and ∼120 μm for a Y–4SC–Y six‐layered electrolyte. The microstructure, crystal structure, impurities present, and the density of the sintered electrolytes were characterized by scanning and transmission electron microscopy, X‐ray and neutron diffraction, secondary ion mass spectroscopy, and water immersion techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call