Abstract
Layered crystals of the transition metal thiophosphates were synthesized and characterized for use as photoelectrodes in photoelectrochemical cells. Crystals incorporating tin and manganese show n-type response while those with iron and nickel show p-type response. These materials have a measured indirect bandgap of about 2.1 eV. They show ability to photoelectrolyze water in acid solutions with onset potentials which change in a Nernstian way as the pH of the solution changes. The onset potential is near zero volts versus a saturated calomel electrode at pH 2. At n-type crystals, oxygen could be evolved upon irradiation at underpotentials of 850 mV and at p-type crystals, hydrogen could be evolved at underpotentials of 400 mV, indicating a net gain in energy conversion. All crystals were unstable in basic solution. Liquid junction photovoltaic cells in iodide-triiodide acid solution using these layered materials were also constructed and found to have low efficiencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.