Abstract

The detection range and accuracy of light detection and ranging (LiDAR) systems are sensitive to variations in fog concentration, leading to the safety of the intended functionality-related (SOTIF-related) problems in the LiDAR-based fusion localization system (LMSFLS). However, due to the uncontrollable weather, it is almost impossible to quantitatively analyze the effects of fog on LMSFLS in a realistic environment. Therefore, in this study, we conduct a layered quantitative SOTIF analysis of the LMSFLS on foggy days using fog simulation. Based on the analysis results, we identify the component-level, system-level, and vehicle-level functional insufficiencies of the LMSFLS, the corresponding quantitative triggering conditions, and the potential SOTIF-related risks. To address the SOTIF-related risks, we propose a functional modification strategy that incorporates visibility recognition and a 3σ-criterion-based variance mismatch degree grading adaptive extended Kalman filter. The visibility of a scenario is recognized to judge whether the measurement information of the LiDAR odometry is disturbed by fog. Moreover, the proposed filter is adopted to fuse the abnormal measurement information of the LiDAR odometry with IMU and GNSS. Simulation results demonstrate that the proposed strategy can inhibit the divergence of the LMSFLS, improve the SOTIF of self-driving cars on foggy days, and accurately recognize the visibility of the scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.