Abstract

With the advancement of light detection and ranging (LiDAR) technology in recent years, various new types of LiDAR have emerged, and the price of LiDAR equipment has gradually decreased. At present, low-cost solid-state LiDARs are gradually occupying the market. To evaluate the performance of two LIDARs for simultaneous localization and mapping. This study investigated the application of solid-state LiDAR and mechanical LiDAR in localization and mapping systems and comparatively analyzed their advantages and disadvantages. We selected some classic open-source algorithms [such as LiDAR odometry and mapping (A-LOAM)] to evaluate the performance of mechanical LiDAR and solid-state LiDAR in localization. The experimental data are adopted from some representative open-source data (such as KITTI data) and real data collected by Shenzhen University. The results showed that the localization accuracy of solid-state LiDAR was lower than that of mechanical LiDAR when the mobile robot moved to the corner and faced square to the wall at close range. Moreover, the localization accuracy of solid-state LiDAR was the same as or even higher than that of mechanical LiDAR when the mobile robots had small changes in the field of view (FOV) and the mobile robot moved along straight lines or other tracks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call